
Fuzzing and Patch Analysis: SAGEly
Advice

Introduction

3

 Goal: Exercise target program to achieve
full coverage of all possible states
influenced by external input

 Code graph reachability exercise

 Input interaction with conditional logic in
program code determines what states you
can reach

Automated Test Generation

4

 Modern approaches fall into two buckets:
→ Random Testing (Fuzzing)

• Zero-knowledge mutation
• Syntax model based grammar
• Direct API interrogation

→ Concolic Testing
• Instrumented target program
• Tracking of dataflow throughout execution
• Observation of program branch logic & constraints
• Symbolic reasoning about relationship between

input and code logic

Automated Testing
Approaches

5

 Advanced Fuzzers derive grammars from well formed
data samples or are given a manually constructed
syntax & interaction model that is expressed in a
higher level grammar

 For automation, syntax is inferred using string
grouping algorithms such as n-gram

 A good modern example is Radamsa
→ Supply a corpus of well formed inputs
→ Multiple grammar inference strategies
→ Detection of repeated structures or identification of basic

types is automatic

Advanced Fuzzing

6

 Unfortunately even the most advanced fuzzers cannot cover
all possible states because they are unaware of data
constraints.

 The below example would require an upper bound of 2^32
or 4 billion attempts to meet the condition required to
trigger the crash

Limits to Fuzzing

void test(char *buf)
{
 int n=0;
 if(buf[0] == 'b') n++;
 if(buf[1] == 'a') n++;
 if(buf[2] == 'd') n++;
 if(buf[3] == '!') n++;
 if(n==4) {
 crash();
 }
}

7

 For anything beyond string grouping algorithms,
direct instrumentation of the code and observation
of interaction between data and conditional logic is
required

 Early academic work in this area:
→ DART: Directed Automated Random Testing

• 2005 - Patrice Godefroid, et al

→ CUTE: a concolic unit testing engine for C
• 2005 - Sen, Koushik

→ EXE: Automatically Generating Inputs of Death
• 2006 -Dawson Engler

Concolic Testing

Concolic Test Generation: Core
Concepts

9

 Code Coverage
→ Analysis of program runtime to determine

execution flow
→ Collect the sequence of execution of basic blocks

and branch edges

 Several approaches
→ Native debugger API
→ CPU Branch Interrupts
→ Static binary rewriting
→ Dynamic binary instrumentation

Code Coverage & Taint
Analysis

10

 Taint Analysis
→ Analysis of program runtime to determine data

flow from external input throughout memory
→ Monitor each instruction for propagation of

user controlled input from source operands to
destination operands

→ Dependency tree is generated according to
tainted data flows in memory or CPU registers

→ Taint analysis is imperfect – propagation rules
must dictate the level of inferred dataflow that
is propagated

Code Coverage & Taint
Analysis

11

 JIT modification of binary code
→ As new code blocks are visited or modules are loaded,

an analysis phase disassembles the binary to identify
code structure

→ Instructions may be inserted at arbitrary locations
around or within the disassembled target binary

→ Modified code is cached and referenced instead of
original binary

 Skips some problems with static binary rewriting
and maintains runtime state for conditional
instrumentation

Dynamic Binary
Instrumentation

12

 Symbolic execution involves computation of a mathematical
expression that represents the logic within a program.

 It can be thought of as an algebra designed to express
computation.

Symbolic Execution

void test(char *buf)
{
 int n = 0;
 if(buf[0] == 'b') n+
+;
 if(buf[1] == 'a') n+
+;
 if(buf[2] == 'd') n+
+;
 if(buf[3] == '!') n+
+;
 if(n==4) {
 crash();
 }
}

(declare-const buf (Array Int Int))
(declare-fun test () Int)
(declare-const n Int)
(assert (= n 0))
(ite (= (select buf 0) 98) (+ n 1)
0)
(ite (= (select buf 1) 97) (+ n 1)
0)
(ite (= (select buf 2) 100) (+ n 1)
0)
(ite (= (select buf 3) 92) (+ n 1)
0)
(assert (= n 4))
(check-sat)
(get-model)

13

 Symbolic execution involves computation of a mathematical
expression that represents the logic within a program.

 It can be thought of as an algebra designed to express
computation.

Symbolic Execution

void condition(int x)
{

int ret = 0;
if (x > 50)

ret = 1;
else

ret = 2;
return ret

}

(declare-fun condition () Int)
(declare-const ret Int)
(declare-const x Int)
(assert (=> (>= x 50) (= ret 1)))
(assert (=> (< x 50) (= ret 2)))
(assert (= ret 1))
(check-sat)
(get-model)

sat
(model

(define-fun x () Int 50)
(define-fun ret () Int 1)

)

14

 Last year we used Symbolic Execution to
emulate forward from a crash to determine
exploitability

Symbolic Execution

void test_motriage(unsigned int
*buf)
{
 unsigned int b,x,y;

 b = buf[0];
 x = buf[b+0x11223344];
 y = buf[x];
 exploit_me(1, x, y);
}

15

 Last year we used Symbolic Execution to
emulate forward from a crash to determine
exploitability

Symbolic Execution

void exploit_me
 (int depth,
 unsigned int x,
 unsigned int y)
{
 int stack[1];
 int b, i;
 b = x & 0xff;
 switch(depth) {
...
 }
 exploit_me(++depth, x>>8,
y);
}

case 4:
 if(b == 0x44)
 stack[y] = 1;
 return;
case 3:
 if(b != 0x33) y = 0;
 break;
case 2:
 if(b != 0x22) y = 0;
 break;
case 1:
 if(b != 0x11) y = 0;
 break;
default:
 assert(0);

16

 Last year we used Symbolic Execution to
emulate forward from a crash to determine
exploitability

 [insert screenshot of crashflow here]

Symbolic Execution

17

18

 Comparisons are done on values to determine
which branch of code to take:

 We observe these constraints to determine what
data value ranges allow execution in different paths

 A code path is determined by collecting a series of
these constraints which determines the execution
flow of the program

Constraint Generation

if (a > b):
block1

else:
block2

19

 Against binary targets we need to track flags and
evaluate the dependent comparison before a jump

 This may be done manually or through the use of an IR

Constraint Generation

 0x080483d4 <+0>: push %ebp
 0x080483d5 <+1>: mov %esp,%ebp
 0x080483d7 <+3>: and $0xfffffff0,%esp
 0x080483da <+6>: sub $0x10,%esp
 0x080483dd <+9>: cmpl $0x1,0x8(%ebp)
 0x080483e1 <+13>: jle 0x80483f1 <main+29>
 0x080483e3 <+15>: movl $0x80484d0,(%esp)
 0x080483ea <+22>: call 0x80482f0 <puts@plt>
 0x080483ef <+27>: jmp 0x80483f2 <main+30>
 0x080483f1 <+29>: nop
 0x080483f2 <+30>: leave
 0x080483f3 <+31>: ret

20

 A formula representing the code path logic is
generated in a format acceptable to a symbolic
execution engine

 To explore alternate paths, we invert the
conditional logic of the last branch and allow the
solver to generate an example that would match
the inverted conditional logic

 Iterative use of this algorithm allows us to explore
a complete program graph

Constraint Solving

21

Test Generation

 Input: ‘bad?’

 Formula generated by symbolic execution:
→ Φ:= (i0=‘b’) && (i1=‘a’) && (i2=‘d’) && (i3<>‘!’)

 New formulas:
→ Φ0:= (i0=‘b’) && (i1=‘a’) && (i2=‘d’) && (i3=‘!’)

→ Φ1:= (i0=‘b’) && (i1=‘a’) && (i2<>‘d’) && (i3<>‘!’)

→ Φ2:= (i0=‘b’) && (i1<>‘a’) && (i2=‘d’) && (i3<>‘!’)

→ Φ3:= (i0<>‘b’) && (i1=‘a’) && (i2=‘d’) && (i3<>‘!’)

22

Test Generation

Microsoft SAGE

24

Implementation

25

 Generational Search vs DFS
→ DFS or BFS would negate only one of the branches
→ Generational search negates each condition and solves for each, generating

many new inputs per symbolic execution phase instead of just one

 Constraint Optimization
→ Constraint Elimination - reduces the size of constraint solver queries by

removing the constraints which do not share symbolic variables with the
negated constraint

→ Local constraint Caching - skips a constraint if it has already been added to
the path constraint

→ Flip count limit - establishes the maximum number of times a constraint
generated from a particular program instruction can be flipped

→ Constraint Subsumption - tracks constraints dominated by a specific branch,
skips identical constraints generated from the same instruction location

Optimizations

26

 Thousands of crashes found in the Windows 7
and Office products – 1/3 of all file fuzzing bugs
since 2007

 Lessons Learned
→ Vulnerabilities discovered are usually at shallow

code depths
→ Symbolic Execution state is limited so wrappers

need to be developed for library code
→ A small number of generations typically find the

majority of vulnerabilities

Results

Moflow::FuzzFlow

28

Implementation

29

 Tracer
→ Taint tracer from BAP is not optimized
→ For this application, inputs over a few kB are

problematic
→ PIN is unable to flush single basic block hooks from code

cache for code coverage hit trace

 Symbolic Execution
→ Slow conversion from BIL to SMTLIB on big traces

 FuzzFlow
→ Libraries need to be wrapped directly
→ We lack most of the optimizations in SAGE such as

constraint subsumption

Limitations

30

int main(int argc, char *argv[])
{
 char buf[500];
 size_t count;
 fd = open(argv[1], O_RDONLY);
 if(fd == -1) {
 perror("open");
 exit(-1);
 }
 count = read(fd, buf, 500);
 if(count == -1) {
 perror("read");
 exit(-1);
 }
 close(fd);
 test(buf);
 return 0;

}

void crash(){
 int i;
 // Add some basic blocks
 for(i=0;i<10;i++){
 i += 1;
 }
 (int)NULL = 0;
}

void test(char * buf)
{
 int n=0;
 if(buf[0] == 'b') n++;
 if(buf[1] == 'a') n++;
 if(buf[2] == 'd') n++;
 if(buf[3] == '!') n++;
 if(n==4){
 crash();
 }
}

Does It Blend?

31

Does It Blend?

moflow@ubuntu:~/moflow-bap-0.7/custom_utils/egas$./egas -app test/bof1 -seed
test/input.txt
Starting program
Thread 0 starting
Opening tainted file: samples/13.sol
Tainting 5 bytes from read at bffafe30
buffer_size: 5, requested length: 5
Taint introduction #0. @bffafe30/5 bytes: file samples/13.sol
adding new mapping from file samples/13.sol to 0 on taint num 1
adding new mapping from file samples/13.sol to 1 on taint num 2
adding new mapping from file samples/13.sol to 2 on taint num 3
adding new mapping from file samples/13.sol to 3 on taint num 4
adding new mapping from file samples/13.sol to 4 on taint num 5
Activating taint analysis
CRASH! Sample: samples/13.sol saved as crashes/2014-06-20_22:40:10_13.crash
----------STATS----------
% total count desc
68% 13s 9 taint tracing the target (produces .bpt)
16% 3s 14 gathering coverage info
5% 1s 9 symbolic execution
0% 0s 0 .bpt concretization
0% 0s 13 solver interaction
11% 2s 1 unaccounted

elapsed: 19.000000

32

Real World Vulnerability
Discovery
moflow@ubuntu:~/moflow-bap-0.7/custom_utils/egas$./egas -app /home/moflow/graphite2-
1.2.3/tests/comparerenderer/comparerenderer -seed /home/moflow/graphite2-
1.2.3/tests/fonts/tiny.ttf -fmt "-t /home/moflow/graphite2-
1.2.3/tests/texts/udhr_nep.txt -s 12 -f %s -n“

Breakpoint 1, _IO_fread (buf=0x0, size=1, count=3758096384, fp=0x8053230) at
iofread.c:37
37 in iofread.c
(gdb) bt
#0 _IO_fread (buf=0x0, size=1, count=3758096384, fp=0x8053230) at iofread.c:37
#1 0x4003a8ca in graphite2::FileFace::get_table_fn(void const*, unsigned int, unsigned
int*) ()
 from /home/moflow/graphite2-1.2.3/src/libgraphite2.so.3
#2 0x4002e8e5 in graphite2::Face::Table::Table(graphite2::Face const&,
graphite2::TtfUtil::Tag) ()
 from /home/moflow/graphite2-1.2.3/src/libgraphite2.so.3
#3 0x4002858a in (anonymous namespace)::load_face(graphite2::Face&, unsigned int) ()
 from /home/moflow/graphite2-1.2.3/src/libgraphite2.so.3
#4 0x40028695 in gr_make_face_with_ops () from /home/moflow/graphite2-
1.2.3/src/libgraphite2.so.3
#5 0x40028aac in gr_make_file_face () from /home/moflow/graphite2-
1.2.3/src/libgraphite2.so.3
#6 0x0804d56d in Gr2Face::Gr2Face(char const*, int, std::string const&, bool) ()
#7 0x0804b664 in main ()

33

Real World Vulnerability
Discovery
const void *FileFace::get_table_fn(const void* appFaceHandle, unsigned int name, size_t
*len)
{
 if (appFaceHandle == 0) return 0;
 const FileFace & file_face = *static_cast<const FileFace *>(appFaceHandle);
 void *tbl;
 size_t tbl_offset, tbl_len;
 if (!TtfUtil::GetTableInfo(name, file_face._header_tbl,
 file_face._table_dir, tbl_offset, tbl_len))
 return 0;

 if (tbl_offset + tbl_len > file_face._file_len
 || fseek(file_face._file, tbl_offset, SEEK_SET) != 0)
 return 0;

 tbl = malloc(tbl_len);
 if (fread(tbl, 1, tbl_len, file_face._file) != tbl_len)
 {
 free(tbl);
 return 0;
 }

 if (len) *len = tbl_len;
 return tbl;
}

Binary Differencing

35

 In 2004, Halvar was the first to apply isomorphic
graph comparison to the problem of binary program
differencing

 The primary class of vulnerabilities at the time were
Integer Overflows
→ “Integer overflows are heavily represented in OS vendor

advisories, rising to number 2 in 2006”
http://cwe.mitre.org/documents/vuln-trends/index.html

→ Integer Overflows are localized vulnerabilities that result
in array indexing or heap allocation size miscalculations

 Many vulnerabilities were targeting file formats
such a Microsoft Office

The Good Old Days

http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html

36

 Last update for the only commercialized BinDiff tool
(Zynamics BinDiff) was in 2011

 The majority of vulnerabilities being patched by
Microsoft are use-after-free bugs in Internet
Explorer which has a high degree of separation
between the root cause that gets patched and the
actual code path that can trigger the bug leading to
an exploitable condition
→ First added to CWE in 2008, now dominates as a

vulnerability class in web-browsers and document
parsers

BinDiff in 2014

37

Inline Bounds Checking

38

Use-After-Free

39

 Hash Matching (bytes/names)

 MD index matching (flowgraph/callgraph,
up/down)

 Instruction count

 Address sequence

 String references

 Loop count

 Call sequence

Function Matching

40

 Edges Prime Product

 Hash/Prime

 MD index (flowgraph/callgraph, up/down)

 Loop entry

 Entry/Exit point

 Jump sequence

Basic Block Matching

41

 Mismatched functions
→ Some functions are identical in both binaries,

but mismatched by the differ

 Assembly refactoring
→ Some functions are semantically identical in

both binaries, but some assembly instructions
have changed/moved

 Little to no context
→ Functions are given a similarity rating, but no

potential indicators of security-related additions

Practical Problems

42

 Compiler optimizations are not handled

 Chunked functions are not handled

 BinDiff heuristics are not tunable / configurable

 IDA misidentifies data as code

 UAF vulnerabilities are hard to reverse engineer
→ The DOM is massive and interactions between

objects are not defined
→ The patches are typically simple reference counting

patches (add missing calls to AddRef)

Practical Problems

43

Mismatched Functions

44

 Our solution is to post-process the
database generated from BinDiff

 We augment the existing database by
performing further analysis with IDApython
scripts

 New tables are added to supplement the
existing information

AutoDiff

45

 Features
→ Instruction counting (including chunked

function)
→ Instructions added/removed from each

function
→ IntSafe library awareness
→ Filtering of innocuous / superfluous changes
→ Filtering of changes without a security impact

• Example: new ‘ret’ instructions generated by
compiler

→ Mnemonic list comparison
• To determine when register substitution is the only

change

AutoDiff

46

 MS13-097 – ieinstal.dll: 19% reduction

Results

===

= AutoDiff / Statistics =

===

Number of changed functions declared by BinDiff : 179

Number of functions filtered out by Sanitizer : 26

Number of functions contain "IntSafe patch" : 1

Number of functions ReMatched : 7

Number of functions still left to analysis : 145

47

 MS14-017 – wordcnv.dll: 76% reduction

Results

===

= AutoDiff / Statistics =

===

Number of changed functions declared by BinDiff : 55

Number of functions filtered out by Sanitizer : 0

Number of functions contain "IntSafe patch" : 0

Number of functions ReMatched : 42

Number of functions still left to analysis : 13

48

 MS14-035 – urlmon.dll: 29% reduction

Results

===

= AutoDiff / Statistics =

===

Number of changed functions declared by BinDiff : 31

Number of functions filtered out by Sanitizer : 9

Number of functions contain "IntSafe patch" : 0

Number of functions ReMatched : 0

Number of functions still left to analysis : 22

49

 MS14-035 – mshtml.dll: 21% reduction

Results

===

= AutoDiff / Statistics =

===

Number of changed functions declared by BinDiff : 543

Number of functions filtered out by Sanitizer : 56

Number of functions contain "IntSafe patch" : 0

Number of functions ReMatched : 61

Number of functions still left to analysis : 426

50

 Adobe CVE-2014-0497: 87% reduction

Results

===

= AutoDiff / Statistics =

===

Number of changed functions declared by BinDiff : 1118

Number of functions filtered out by Sanitizer : 975

Number of functions contain "IntSafe patch" : 0

Number of functions ReMatched : 0

Number of functions still left to analysis : 143

Semantic Difference Engine

52

 Reassignment of registers while
maintaining the same semantics

 Inversion of branch logic
→ such as jge -> jl

 Using more optimized assembler
instructions that are semantically
equivalent

BinDiff Problem Areas

53

 We've shown success using symbolic
execution to analyze code paths to
generate inputs

 We should be able to ask a solver to tell us
if two sets of code are equivalent

 In last year's presentation we showed an
example of exactly this
→ Is “add eax, ebx”

equivalent to this code:

The Idea

 add eax, ebx
 xor ebx, ebx
 sub ecx, 0x123
 setz bl
 add eax, ebx

54

The Idea

 ASSERT(0bin1 = (LET initial_EBX_77_0 = R_EBX_6 IN
(LET initial_EAX_78_1 = R_EAX_5 IN
(LET R_EAX_80_2 = BVPLUS(32, R_EAX_5,R_EBX_6) IN
(LET R_ECX_117_3 = BVSUB(32, R_ECX_7,0hex00000123)
IN
(LET R_ZF_144_4 = IF (0hex00000000=R_ECX_117_3)
THEN 0bin1 ELSE 0bin0 ENDIF IN
(LET R_EAX_149_5 = BVPLUS(32, R_EAX_80_2,
(0bin0000000000000000000000000000000 @
R_ZF_144_4)) IN
(LET final_EAX_180_6 = R_EAX_149_5 IN
IF (NOT(final_EAX_180_6=BVPLUS(32,
initial_EAX_78_1,initial_EBX_77_0))) THEN
);
QUERY(FALSE);
COUNTEREXAMPLE;

add eax, ebx
xor ebx, ebx
sub ecx, 0x123

setz bl
add eax, ebx

Model:
R_ECX_7 -> 0x123
Solve result: Invalid

55

 Strategy would be to mark function
parameters as symbolic and discover each
path constraint to solve for inputs that would
reach all paths

 At termination of each path the resulting CPU
state and variable values should be identical

 Unfortunately this led to a false impression of
the feasibility of this approach

The Idea

56

 Low level IR is tied to a memory and
register model

 This level of abstraction does not
sufficiently alias references to the same
memory

 At minimum private symbol information
would be needed to abstract beyond the
memory addresses so we could manually
match the values

 Decompilation would be a better first step
towards this strategy, but symbol names
are not guaranteed to match

The Reality

57

 David Ramos and Dawson Engler published
"Practical, low-effort equivalence verification of
real code" which shows a technique for
performing a semantic equivalence test against
source code using a modified version of KLEE

 Original application was for program verification
of new implementations vs reference
implementations, our problem is a subset of this

 Turns out the approach is nearly identical but
works on a higher level of abstraction

A Practical Approach

58

 Code is compiled with symbol information using KLEE/LLVM

 A test harness is linked against each of the two functions to be
compared

 The harness marks each parameter of the two functions as
symbolic

 If input parameters are dereferenced as pointers, memory is lazily
allocated as symbolic values

 Symbolically executes each function for each discovered
constraint

 At the end of execution, KLEE traverses each memory location
and solves for equivalent values at each location

 On failure of this check, a concrete input is generated that can
prove the functions are different, else they've been proven equal

A Practical Approach

59

 The ability to alias memory references
through the use of symbol information is
the crucial missing piece of the puzzle for
our approach

 There are additional difficulties with
reference tracking, object comparison for
passed parameters or return values, as
well as overlapping memory references

 They explicitly specify that inline
assembler is not handled due to their
reliance on symbol information

Where to Next

Conclusions

61

 Sourcefire VulnDev Team
→ Richard Johnson

• rjohnson@sourcefire.com
• @richinseattle

→ Ryan Pentney
→ Marcin Noga
→ Yves Younan
→ Pawel Janic (emeritus)

→ Code release will be announced on
• http://vrt-blog.snort.org/

Thank You!

mailto:rjohnson@sourcefire.com
http://vrt-blog.snort.org/
http://vrt-blog.snort.org/
http://vrt-blog.snort.org/

	Slide 1
	Slide 2
	Automated Test Generation
	Automated Testing Approaches
	Advanced Fuzzing
	Limits to Fuzzing
	Concolic Testing
	Slide 8
	Code Coverage & Taint Analysis
	Code Coverage & Taint Analysis
	Dynamic Binary Instrumentation
	Symbolic Execution
	Symbolic Execution
	Symbolic Execution
	Symbolic Execution
	Symbolic Execution
	Slide 17
	Constraint Generation
	Constraint Generation
	Constraint Solving
	Test Generation
	Test Generation
	Slide 23
	Implementation
	Optimizations
	Results
	Slide 27
	Implementation
	Limitations
	Does It Blend?
	Does It Blend?
	Real World Vulnerability Discovery
	Real World Vulnerability Discovery
	Slide 34
	The Good Old Days
	BinDiff in 2014
	Inline Bounds Checking
	Use-After-Free
	Function Matching
	Basic Block Matching
	Practical Problems
	Practical Problems
	Mismatched Functions
	AutoDiff
	AutoDiff
	Results
	Results
	Results
	Results
	Results
	Slide 51
	BinDiff Problem Areas
	The Idea
	The Idea
	The Idea
	The Reality
	A Practical Approach
	A Practical Approach
	Where to Next
	Slide 60
	Thank You!

