
High Performance Fuzzing

Richard Johnson | Hushcon 2015

Introduction

Whoami
→Richard Johnson / @richinseattle
→Research Manager, Vulnerability Development
→Cisco, Talos Security Intelligence and Research Group

Agenda
→Why Performance Matters
→Targeting & Input Selection
→Engine Design
→Host Configuration

Why Performance Matters

Why Performance Matters

Mutational fuzzing almost seems too easy
→Just throw some hardware at the problem

Majority of CPU cycles are wasted
→Program load time vs file parsing time
→Fuzzing requires high I/O, blocking CPU
→Mutations on large files are inefficient

Quantitatively analyze fuzzer designs
Qualitatively analyze fuzzer strategies

Microsoft SDL Verification Guidance

 Fuzzing is a requirement of SDLC Verification:

“Where input to file parsing code could have crossed a trust
boundary, file fuzzing must be performed on that code. All
issues must be fixed as described in the Security
Development Lifecycle (SDL) Bug Bar. Each file parser is
required to be fuzzed using a recommended tool.”

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.asp

Microsoft SDL Verification Guidance

 Fuzzing is a requirement of SDL Verification:

“Win32/64/Mac: An Optimized set of templates must be
used. Template optimization is based on the maximum
amount of code coverage of the parser with the minimum
number of templates. Optimized templates have been
shown to double fuzzing effectiveness in studies. A
minimum of 500,000 iterations, and have fuzzed at least
250,000 iterations since the last bug found/fixed that meets
the SDL Bug Bar”

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.asp

Microsoft SDL Verification Guidance

Required fuzzing is a good thing
How did they calibrate?
→Iterations limited by practical resources
→Parsers with greater complexity require more resources
→Iterations is a poor choice for defining guidance

Questions:
→What properties define the theoretical limit of available

resources
→What are the best practices for fuzzing optimize

effectiveness

Historical Performance Stats

Microsoft Windows Vista 2006
→350mil iterations, 250+ file parsers

 ~1.4mil iterations per parser (on average)
→300+ issues fixed (1 bug / 1.16 million tests)

Microsoft Office 2010
→800 million iterations, 400 file parsers
→1800 bugs fixed (1 bug / 44444 tests)
→ http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx

http://www.computerworld.com/article/2516563/security0/microsoft-runs-fuzzing-botnet--finds-1-800-office-bugs.html

Charlie Miller 2010
→7mil iterations, 4 parsers
• ~1.8m iterations per parser (on average)
→320 - 470 unique crashes (1 bug / 14893 - 21875 tests)

Historical Performance Stats (cmiller)

Charlie Miller intentionally went with a poor design
→5-lines of python to mutate input
→AppleScript to iterate files with system handler
→Microsoft minifuzz is equally stupid

 Input Selection
→80,000 PDFs reduced to 1515 via code coverage minset

→

Input Software Count avg time

PDF Adobe Reader 9.2.0 3M 5.35s

PDF Apple Preview (OS X 10.6.1) 2.8M 7.68s

PPT OpenOffice Impress 3.3.1 610k 32s+

PPT MSOffice PowerPoint 2008 Mac 595k 32s

Targeting and Input Selection

Target Selection

64-bit vs 32-bit applications (x86 architecture)
→64-bit binaries are fatter than 32-bit
→64-bit runtime memory usage is greater than 32-bit
→64-bit OSs take more memory and disk for your VMs

→Some software only comes compiled as 32-bit binaries
→Some fuzzers and debuggers only support 32-bit

→64-bit CPUs have more registers to increase performance
• Optimization depends on compiler

Target Selection

 So are 64-bit programs faster?
→On x64? It varies either way to a small degree
• Chrome - Negligible
– http://www.7tutorials.com/google-chrome-64-bit-it-better-32-bit-version

• Photoshop - YES?
– 8-12% (but talks about unrelated disk i/o optimizations)
– https://helpx.adobe.com/photoshop/kb/64-bit-os-benefits-limitations.html

→On SPARC? NO
• True story, but who cares
– http://www.osnews.com/story/5768/Are_64-bit_Binaries_Really_Slower_than_32-bit_Binaries_/page3/

Target Selection

Much more important: Minimize lines of code
→What is the ratio of time spent initializing program and

executing actual parser code
Optimization strategy
→Target libraries directly
→Write thin wrappers for each API
• This allows feature targeting
→Patch target to eliminate costly checksums / compression
• This is what flayer is all about (Drewery & Ormandy WOOT'07)
→Instrument target for in-memory fuzzing

Input Selection

 Input is a numerical set
 Input parsers are (should be) state machines
→Specifications described using FSM
→Actual parser code typically not implemented using FSM
→LangSec Paper on high performance FSM Parsers
• http://www.cs.dartmouth.edu/~pete/pubs/LangSec-2014-fsm-parsers.pdf

Goal: search space and discover new transitions
 Each search is computationally expensive
→We need to optimize for time

Input Selection

Optimize input selection
→File size is very important
• Mutations are more meaningful with smaller input size
• Smaller inputs are read and parsed quicker
• Some test generation approaches utilize large amounts of memory per-

input-byte
→Specific feature set per input allows for focused targeting
• Handcrafted or minimized samples
• Feedback fuzzing or concolic testing automates creation of unique

small inputs with different features

Input Selection

CMU Coverset
→Optimizing Seed Selection for Fuzzing – USENIX 2014
• https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-rebert.pdf

→Minset helps less than expected
→Unweighted Minset is the winner
→Conclusion: Minset is good when it’s not broken
• Peach minset tool is not minimal set algorithm
• Peach minset performs equivalent to random selection

We will talk more about coverage tracer perf in a bit..

Engine Design

Engine Design

Generate new inputs
 Execute target with new input
Detect failure conditions

Engine Design

Generate new inputs
 Execute target with new input
 Trace target execution
Monitor trace output
Detect failure conditions
Detect non-failure conditions

Input Generation

Most important is the selection of mutators
→AFL

Deterministic bitflip
 1, 2, 4, 8, 16, 32 bits
Deterministic addition/subtraction
 Values { 1 – 35 } for each byte, short, word, dword
 Little endian and big endian
Deterministic 'interesting' constant values
 27 boundary values
Dictionary keywords
Havoc
 Random bitflips, arithmetic, block move/copy, truncate
Splice
 Merge two previously generated inputs

Input Generation

Most important is the selection of mutators
→Radamsa

 ab: enhance silly issues in ASCII string data handling
 bd: drop a byte
 bf: flip one bit
 bi: insert a random byte
 br: repeat a byte
 bp: permute some bytes
 bei: increment a byte by one
 bed: decrement a byte by one
 ber: swap a byte with a random one
 sr: repeat a sequence of bytes
 sd: delete a sequence of bytes
 ld: delete a line

Input Generation

Most important is the selection of mutators
→Radamsa

 lds: delete many lines
 lr2: duplicate a line
 li: copy a line closeby
 lr: repeat a line
 ls: swap two lines
 lp: swap order of lines
 lis: insert a line from elsewhere
 lrs: replace a line with one from elsewhere
 td: delete a node
 tr2: duplicate a node
 ts1: swap one node with another one
 ts2: swap two nodes pairwise

Input Generation

Most important is the selection of mutators
→Radamsa

 tr: repeat a path of the parse tree
 uw: try to make a code point too wide
 ui: insert funny unicode
 num: try to modify a textual number
 xp: try to parse XML and mutate it
 ft: jump to a similar position in block
 fn: likely clone data between similar positions
 fo: fuse previously seen data elsewhere

Mutation patterns (-p)
 od: Mutate once
 nd: Mutate possibly many times
 bu: Make several mutations closeby once

Input Generation

Deterministic mutators first
Permutations and infinite random mode
 Stack permutations to a reasonable level

Need feedback loop to assess effectiveness of new
mutators

Execute Target

Using an execution loop is slow
→process creation, linking, initialization

Use a fork() server
→Skip initialization
→Copy-on-write process cloning is very fast on Linux
→Windows and OSX manually copy process memory
• 30x+ performance hit over COW pages

Execute Target

Windows black magic SUA posix fork() tangent
→ZwCreateProcess (NULL, …) – Windows 2000
• No sections, threads, CSRSS, User32, etc
→RtlCloneUserProcess – Windows Vista
• Works to limited extent
• Applications cannot use Win32 API
→RtlCreateProcessReflection - Windows 7
• Designed for quick full memory dump creation
• Does not restore threads

Windows 10 fork...

Execute Target

Are you forking kidding me??
linux

10000 fork()
0.763s → 13106 exec/sec

 10000 fork/exec(/bin/false)
2.761s → 3621 exec/sec

 10000 fork/exec(/bin/false) w/ taskset
2.073s → 4823 exec/sec

cygwin
10000 fork()

29.954s → 333 exec/sec
 10000 fork/exec(/bin/false)

63.898s → 156 exec/sec

Fork/exec(/bin/false) (machine #2)

linux
10000 – 0m2.263s: 4419 exec/sec

msys
10000 – 1m14.952s: 135 exec/sec

cygwin
10000 – 0m46.972s: 213 exec/sec

Native (RtlCloneUserProcess)
10000 – 0m17.457s: 574 exec/sec

Trace Target Execution

 Feedback loop fuzzing finally realized with AFL
→Allows qualitative assessment of fuzzing strategy
→Optimized instrumentation strategy
→Optimized feedback signal
→Source code only**

Previous attempts at binary feedback were too slow
→EFS was overly complicated and used PaiMei
→BCCF uses COSEINC code coverage Pintool
→Honggfuzz uses BTS

Trace Target Execution

Binary hooking engine selection is critical
→Pin / DynamoRIO are slow

Cover trace - pngtest single shot
Native real 0m0.121s
PIN real 0m0.898s 7.4x
DynamoRIO real 0m0.466s 3.8x

Cover trace - pngtest * 551 files
Native real 0m5.652s
PIN real 4m35.170s 48.6x
DynamoRIO real 1m9.840s 12.3x

Trace Target Execution

Binary hooking engine selection is critical
→Pin / DynamoRIO are slow

 Skip instrumentation and hooking with a fork server!

TurboTrace:

1. Fork self in LD_PRELOADed library.
2. ptrace the forked child.
3. Break on _start
4. Inject a call to the actual function that will be doing repeated fork()ing.
5. Step over a call.
6. Repair the _start and resume execution.

6a) On each iteration fixup argv

TurboTracer Demo

Trace Target Execution

Binary hooking engine selection is critical
→TurboTrace performance, 100 iterations
• 20 – 50% speed increase

PIN initialization only:
Pin without pintool on test_png : 55.03 seconds
Turbotrace without pintool on test_png : 37.24 seconds

bblocks pintool:
Pin bblocks pintool on test_png : 72.62 seconds
Turbotrace bblocks pintool on test_png : 51.07 seconds

calltrace pintool:
Pin calltrace pintool on test_png : 106.19 seconds
Turbotrace calltrace pintool on test_png : 85.24 seconds

Trace Target Execution

Binary hooking engine selection is critical
→QEMU
• Uses QEMU userland block tracing
• Statically compiled binaries
• Linux only
• Readpng: ~860 ex/s vs ~3800 afl-gcc – 4.5x slower
→DynInst
• Static binary rewriting
• Dynamically compiled binaries
• Linux only for now (windows port in progress)
• Readpng: ~2400 ex/s vs ~3300 afl-gcc – 1.3x slower

AFL-DYNINST DEMO

But wait there's more!
Hushcon Special Preview Demo

Monitor Trace Output

 Logging is critical, tracers perform way too much I/O
→Only store enough for feedback signal

Block coverage is weak, edge transitions are better
Use shared memory

 cur_location = (block_address >> 4) ^ (block_address << 8);
 shared_mem[cur_location ^ prev_location]++;
 prev_location = cur_location >> 1;

Detect Failure / Non-Failure

 Failure
→Linux
• #define WTERMSIG(status) ((status) & 0x7f)
→Windows
• Debugger is the only option

Non-Failure
→Timeout
• Self calibrate
• Lowest possible timeout,
→CPU Usage
• If CPU utilization drops to near zero for X millisec

Host Configuration

System Cache

Windows
→Pre-Windows 7 used only 8 MB memory for filesystem cache
• HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management
• Set value LargeSystemCache = 1
→Enable disk write caching in disk properties

System Cache

 Linux
→Enables large system cache by default
→/sbin/hdparm -W 1 /dev/hda 1 Enable write caching
→$ sysctl -a | grep dirty
• vm.dirty_background_ratio = 10
• vm.dirty_background_bytes = 0
• vm.dirty_ratio = 20
• vm.dirty_bytes = 0
• vm.dirty_writeback_centisecs = 500
• vm.dirty_expire_centisecs = 3000

Storage: HDD

 ~100 MB/s
Cache commonly used programs proactively
→Windows Superfetch (default)
→Linux Preload
• http://techthrob.com/tech/preload_files/graph.png

 Features are most useful in low memory availability
scenarios
→Typical for fuzzing w/ 1-2gb memory per VM

Storage: HDD

Use a solid state USB drive for cache
→Benefit is low latency, not high bandwidth
→Windows ReadyBoost (available by default)
• Random access is 10x faster on flash than hdd
• http://www.7tutorials.com/files/img/readyboost_performance/readyboost_performance14.png

• If you aren't already using a device for caching, and the new device is
between 256MB and 32GB in size, has a transfer rate of 2.5MB/s or
higher for random 4KB reads, and has a transfer rate of 1.75MB/s or
higher for random 512KB write
– https://technet.microsoft.com/en-us/magazine/2007.03.vistakernel.aspx

→Linux >3.10 bache / zfs l2arc
• 12.2K random io/sec -> 18.5K/sec with bcache, 50% increase
– http://bcache.evilpiepirate.org/

Host Configuration

Standard HDD Raid 0

Storage: SSD

Major performance gains over HDD

Raid 0 SSD

Storage: Ram Disk

Much faster than SSD,
eliminates fragmentation
→ http://superuser.com/questions/686378/can-ssd-raid-be-

faster-than-ramdisk (10GB/s - 17GB/s)

 Linux - built in
→ramfs or tmpfs

Windows - 3rd party
→High amount of variance
• https://www.raymond.cc/blog/12-ram-disk-software-

benchmarked-for-fastest-read-and-write-speed/

→SoftPerfect RamDisk is
winner for free software
• https://www.softperfect.com/products/ramdisk/

Host Configuration

SSD Ramdisk

Memory

32-bit memory limits
→Linux - built in to PAE kernels
→Windows
• Limited based on SKU of your OS
• Driver compatibility is the claimed reasoning
– http://blogs.technet.com/b/markrussinovich/archive/2008/07/21/3092070.aspx

• kernel patching required
– http://www.geoffchappell.com/notes/windows/license/memory.htm
– http://news.saferbytes.it/analisi/2012/08/x86-4gb-memory-limit-from-a-technical-perspective/
– http://news.saferbytes.it/analisi/2013/02/saferbytes-x86-memory-bootkit-new-updated-build-is-out/

Conclusions

Cisco Talos VulnDev Team
→Richard Johnson
• rjohnson@sourcefire.com
• @richinseattle
→Marcin Noga
→Yves Younan
→Piotr Bania
→Aleksandar Nikolic
→Ali Rizvi-Santiago

Thank You!

