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Why Performance Matters



Why Performance Matters

Mutational fuzzing almost seems too easy
→Just throw some hardware at the problem

Majority of CPU cycles are wasted
→Program load time vs file parsing time
→Fuzzing requires high I/O, blocking CPU
→Mutations on large files are inefficient

Quantitatively analyze fuzzer designs
Qualitatively analyze fuzzer strategies



Microsoft SDL Verification Guidance 

 Fuzzing is a requirement of SDLC Verification:

“Where input to file parsing code could have crossed a trust 
boundary, file fuzzing must be performed on that code. All 
issues must be fixed as described in the Security 
Development Lifecycle (SDL) Bug Bar. Each file parser is 
required to be fuzzed using a recommended tool.”

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.asp



Microsoft SDL Verification Guidance 

 Fuzzing is a requirement of SDL Verification:

“Win32/64/Mac: An Optimized set of templates must be 
used. Template optimization is based on the maximum 
amount of code coverage of the parser with the minimum 
number of templates. Optimized templates have been 
shown to double fuzzing effectiveness in studies. A 
minimum of 500,000 iterations, and have fuzzed at least 
250,000 iterations since the last bug found/fixed that meets 
the SDL Bug Bar”

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.asp



Microsoft SDL Verification Guidance 

Required fuzzing is a good thing
How did they calibrate? 
→Iterations limited by practical resources
→Parsers with greater complexity require more resources
→Iterations is a poor choice for defining guidance

  
Questions:
→What properties define the theoretical limit of available 

resources
→What are the best practices for fuzzing optimize  

effectiveness



Historical Performance Stats

Microsoft Windows Vista 2006
→350mil iterations, 250+ file parsers

 ~1.4mil iterations per parser (on average)
→300+ issues fixed (1 bug / 1.16 million tests)

Microsoft Office 2010 
→800 million iterations, 400 file parsers
→1800 bugs fixed (1 bug / 44444 tests)
→ http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx

http://www.computerworld.com/article/2516563/security0/microsoft-runs-fuzzing-botnet--finds-1-800-office-bugs.html

Charlie Miller 2010
→7mil iterations, 4 parsers
• ~1.8m iterations per parser (on average)
→320 - 470 unique crashes (1 bug / 14893 - 21875 tests)



Historical Performance Stats (cmiller)

Charlie Miller intentionally went with a poor design
→5-lines of python to mutate input
→AppleScript to iterate files with system handler
→Microsoft minifuzz is equally stupid

 Input Selection 
→80,000 PDFs reduced to 1515 via code coverage minset

→ 

Input Software Count avg time

PDF Adobe Reader 9.2.0 3M 5.35s

PDF Apple Preview (OS X 10.6.1) 2.8M 7.68s

PPT OpenOffice Impress 3.3.1 610k 32s+

PPT MSOffice PowerPoint 2008 Mac 595k 32s



Targeting and Input Selection



Target Selection

64-bit vs 32-bit applications (x86 architecture)
→64-bit binaries are fatter than 32-bit
→64-bit runtime memory usage is greater than 32-bit
→64-bit OSs take more memory and disk for your VMs

→Some software only comes compiled as 32-bit binaries
→Some fuzzers and debuggers only support 32-bit 

→64-bit CPUs have more registers to increase performance
• Optimization depends on compiler



Target Selection

 So are 64-bit programs faster? 
→On x64? It varies either way to a small degree
• Chrome - Negligible
– http://www.7tutorials.com/google-chrome-64-bit-it-better-32-bit-version

• Photoshop - YES? 
– 8-12% (but talks about unrelated disk i/o optimizations)
– https://helpx.adobe.com/photoshop/kb/64-bit-os-benefits-limitations.html

→On SPARC? NO
• True story, but who cares
– http://www.osnews.com/story/5768/Are_64-bit_Binaries_Really_Slower_than_32-bit_Binaries_/page3/ 



Target Selection

Much more important: Minimize lines of code
→What is the ratio of time spent initializing program and 

executing actual parser code 
Optimization strategy
→Target libraries directly
→Write thin wrappers for each API
• This allows feature targeting 
→Patch target to eliminate costly checksums / compression
• This is what flayer is all about (Drewery & Ormandy WOOT'07)
→Instrument target for in-memory fuzzing



Input Selection

 Input is a numerical set 
 Input parsers are (should be) state machines 
→Specifications described using FSM
→Actual parser code typically not implemented using FSM 
→LangSec Paper on high performance FSM Parsers
• http://www.cs.dartmouth.edu/~pete/pubs/LangSec-2014-fsm-parsers.pdf

Goal: search space and discover new transitions
 Each search is computationally expensive
→We need to optimize for time



Input Selection

Optimize input selection
→File size is very important 
• Mutations are more meaningful with smaller input size 
• Smaller inputs are read and parsed quicker
• Some test generation approaches utilize large amounts of memory per-

input-byte
→Specific feature set per input allows for focused targeting
• Handcrafted or minimized samples
• Feedback fuzzing or concolic testing automates creation of unique 

small inputs with different features



Input Selection

CMU Coverset
→Optimizing Seed Selection for Fuzzing – USENIX 2014
• https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-rebert.pdf

→Minset helps less than expected
→Unweighted  Minset is the winner
→Conclusion: Minset is good when it’s not broken
• Peach minset tool is not minimal set algorithm
• Peach minset performs equivalent to random selection

We will talk more about coverage tracer perf in a bit..



Engine Design



Engine Design

Generate new inputs
 Execute target with new input
Detect failure conditions



Engine Design

Generate new inputs
 Execute target with new input
 Trace target execution
Monitor trace output
Detect failure conditions
Detect non-failure conditions



Input Generation 

Most important is the selection of mutators 
→AFL 

Deterministic bitflip 
     1, 2, 4, 8, 16, 32 bits 
Deterministic addition/subtraction 
     Values { 1 – 35 } for each byte, short, word, dword 
     Little endian and big endian
Deterministic 'interesting' constant values 
     27 boundary values
Dictionary keywords 
Havoc
     Random bitflips, arithmetic, block move/copy, truncate
Splice
     Merge two previously generated inputs



Input Generation 

Most important is the selection of mutators 
→Radamsa

  ab: enhance silly issues in ASCII string data handling
  bd: drop a byte
  bf: flip one bit
  bi: insert a random byte
  br: repeat a byte
  bp: permute some bytes
  bei: increment a byte by one
  bed: decrement a byte by one
  ber: swap a byte with a random one
  sr: repeat a sequence of bytes
  sd: delete a sequence of bytes
  ld: delete a line



Input Generation 

Most important is the selection of mutators 
→Radamsa

  lds: delete many lines
  lr2: duplicate a line
  li: copy a line closeby
  lr: repeat a line
  ls: swap two lines
  lp: swap order of lines
  lis: insert a line from elsewhere
  lrs: replace a line with one from elsewhere
  td: delete a node
  tr2: duplicate a node
  ts1: swap one node with another one
  ts2: swap two nodes pairwise



Input Generation 

Most important is the selection of mutators 
→Radamsa

  tr: repeat a path of the parse tree
  uw: try to make a code point too wide
  ui: insert funny unicode
  num: try to modify a textual number
  xp: try to parse XML and mutate it
  ft: jump to a similar position in block
  fn: likely clone data between similar positions
  fo: fuse previously seen data elsewhere

Mutation patterns (-p)
  od: Mutate once
  nd: Mutate possibly many times
  bu: Make several mutations closeby once



Input Generation

Deterministic mutators first 
Permutations and infinite random mode 
 Stack permutations to a reasonable level

Need feedback loop to assess effectiveness of new 
mutators 



Execute Target 

Using an execution loop is slow
→process creation, linking, initialization

  
Use a fork() server
→Skip initialization 
→Copy-on-write process cloning is very fast on Linux
→Windows and OSX manually copy process memory 
• 30x+ performance hit over COW pages



Execute Target 

Windows black magic SUA posix fork() tangent
→ZwCreateProcess (NULL, …) – Windows 2000
• No sections, threads, CSRSS, User32, etc
→RtlCloneUserProcess – Windows Vista
• Works to limited extent
• Applications cannot use Win32 API 
→RtlCreateProcessReflection - Windows 7
• Designed for quick full memory dump creation
• Does not restore threads 

Windows 10 fork... 



Execute Target 

Are you forking kidding me?? 
linux

10000 fork() 
0.763s → 13106 exec/sec

 10000 fork/exec(/bin/false) 
2.761s → 3621 exec/sec

 10000 fork/exec(/bin/false) w/ taskset
2.073s → 4823 exec/sec

cygwin 
10000 fork() 

29.954s → 333 exec/sec
 10000 fork/exec(/bin/false) 

63.898s → 156 exec/sec

Fork/exec(/bin/false) (machine #2)

linux
10000 – 0m2.263s: 4419 exec/sec

msys
10000 – 1m14.952s: 135 exec/sec

cygwin
10000 – 0m46.972s: 213 exec/sec

Native (RtlCloneUserProcess)
10000 – 0m17.457s: 574 exec/sec



Trace Target Execution

 Feedback loop fuzzing finally realized with AFL 
→Allows qualitative assessment of fuzzing strategy
→Optimized instrumentation strategy
→Optimized feedback signal 
→Source code only**

Previous attempts at binary feedback were too slow 
→EFS was overly complicated and used PaiMei
→BCCF uses COSEINC code coverage Pintool
→Honggfuzz uses BTS



Trace Target Execution

Binary hooking engine selection is critical
→Pin / DynamoRIO are slow 

Cover trace - pngtest single shot 
Native   real 0m0.121s
PIN real 0m0.898s 7.4x
DynamoRIO real 0m0.466s 3.8x

Cover trace - pngtest * 551 files  
Native   real 0m5.652s
PIN real 4m35.170s 48.6x
DynamoRIO real 1m9.840s 12.3x



Trace Target Execution

Binary hooking engine selection is critical
→Pin / DynamoRIO are slow 

 Skip instrumentation and hooking with a fork server!

TurboTrace: 

1. Fork self in LD_PRELOADed library. 
2. ptrace the forked child.
3. Break on _start
4. Inject a call to the actual function that will be doing repeated fork()ing. 
5. Step over a call.
6. Repair the _start and resume execution.

6a) On each iteration fixup argv



TurboTracer Demo



Trace Target Execution

Binary hooking engine selection is critical
→TurboTrace performance, 100 iterations
• 20 – 50%  speed increase

PIN initialization only:
Pin              without pintool on test_png : 55.03 seconds
Turbotrace without pintool on test_png : 37.24 seconds

bblocks pintool:
Pin              bblocks pintool on test_png : 72.62 seconds
Turbotrace bblocks pintool on test_png : 51.07 seconds

calltrace pintool:
Pin              calltrace pintool on test_png : 106.19 seconds
Turbotrace calltrace pintool on test_png : 85.24 seconds



Trace Target Execution

Binary hooking engine selection is critical
→QEMU
• Uses QEMU userland block tracing
• Statically compiled binaries
• Linux only
• Readpng: ~860 ex/s vs ~3800 afl-gcc – 4.5x slower
→DynInst 
• Static binary rewriting
• Dynamically compiled binaries
• Linux only for now (windows port in progress)
• Readpng: ~2400 ex/s vs ~3300 afl-gcc – 1.3x slower



AFL-DYNINST DEMO



But wait there's more!
Hushcon Special Preview Demo



Monitor Trace Output

 Logging is critical, tracers perform way too much I/O
→Only store enough for feedback signal

Block coverage is weak, edge transitions are better
Use shared memory

   cur_location = (block_address >> 4) ^ (block_address << 8);
   shared_mem[cur_location ^ prev_location]++; 
   prev_location = cur_location >> 1;



Detect Failure / Non-Failure

 Failure
→Linux
• #define WTERMSIG(status) ((status) & 0x7f)
→Windows 
• Debugger is the only option

Non-Failure
→Timeout 
• Self calibrate
• Lowest possible timeout,
→CPU Usage
• If CPU utilization drops to near zero for X millisec 



Host Configuration



System Cache

Windows 
→Pre-Windows 7 used only 8 MB memory for filesystem cache
• HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session 

Manager\Memory Management
• Set value LargeSystemCache = 1
→Enable disk write caching in disk properties 



System Cache

 Linux 
→Enables large system cache by default
→/sbin/hdparm -W 1 /dev/hda 1 Enable write caching
→$ sysctl -a | grep dirty
• vm.dirty_background_ratio = 10
• vm.dirty_background_bytes = 0
• vm.dirty_ratio = 20
• vm.dirty_bytes = 0
• vm.dirty_writeback_centisecs = 500
• vm.dirty_expire_centisecs = 3000



Storage: HDD

 ~100 MB/s
Cache commonly used programs proactively
→Windows Superfetch (default)
→Linux Preload
• http://techthrob.com/tech/preload_files/graph.png

 Features are most useful in low memory availability 
scenarios 
→Typical for fuzzing w/ 1-2gb memory per VM



Storage: HDD

Use a solid state USB drive for cache
→Benefit is low latency, not high bandwidth 
→Windows ReadyBoost (available by default)
• Random access is 10x faster on flash than hdd
• http://www.7tutorials.com/files/img/readyboost_performance/readyboost_performance14.png

• If you aren't already using a device for caching, and the new device is 
between 256MB and 32GB in size, has a transfer rate of 2.5MB/s or 
higher for random 4KB reads, and has a transfer rate of 1.75MB/s or 
higher for random 512KB write
– https://technet.microsoft.com/en-us/magazine/2007.03.vistakernel.aspx

→Linux >3.10 bache / zfs l2arc
• 12.2K random io/sec -> 18.5K/sec with bcache, 50% increase
– http://bcache.evilpiepirate.org/



Host Configuration

Standard HDD Raid 0



Storage: SSD

Major performance gains over HDD

Raid 0 SSD



Storage: Ram Disk

Much faster than SSD, 
eliminates fragmentation
→ http://superuser.com/questions/686378/can-ssd-raid-be-

faster-than-ramdisk (10GB/s - 17GB/s)

 Linux - built in
→ramfs or tmpfs

Windows - 3rd party 
→High amount of variance
• https://www.raymond.cc/blog/12-ram-disk-software-

benchmarked-for-fastest-read-and-write-speed/

→SoftPerfect RamDisk is 
winner for free software
• https://www.softperfect.com/products/ramdisk/



Host Configuration

SSD Ramdisk



Memory

32-bit memory limits
→Linux - built in to PAE kernels 
→Windows 
• Limited based on SKU of your OS
• Driver compatibility is the claimed reasoning
– http://blogs.technet.com/b/markrussinovich/archive/2008/07/21/3092070.aspx

• kernel patching required
– http://www.geoffchappell.com/notes/windows/license/memory.htm
– http://news.saferbytes.it/analisi/2012/08/x86-4gb-memory-limit-from-a-technical-perspective/
– http://news.saferbytes.it/analisi/2013/02/saferbytes-x86-memory-bootkit-new-updated-build-is-out/



Conclusions
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