
Richard Johnson

richardj@microsoft.com



 How can we use the visualization tools we 
currently have more effectively?

 How can the Software Development Lifecycle 
benefit from visualizations? 

 What is the impact of visualizations on our 
software security processes?



 What is visualization?
▪ Information transmission through imagery

 Why is visualization important? 
▪ Visualizations utilize the mind’s most perceptive input 

mechanism

 What are the challenges in visualization?
▪ Create intuitive spatial mappings of non-spatial data
▪ Retain clarity while presenting highly dimensional 

data



 Data Visualization



 Information Visualization



 Concept Visualization



 Strategy Visualization



 Metaphor Visualization



 Problem Space
▪ Program Visualization 
▪ Algorithm Visualization

 Sourcing Data
▪ Static vs Dynamic data
▪ Inaccurate analysis tools

 The goal is always: Reduce Complexity!



 Structural Connectivity
▪ Execution & Data Flow
▪ Class Hierarchies

 State Machine Models
▪ Memory profile
▪ Algorithm Complexity

 Revision History
▪ Age and authorship
▪ Milestones in quality assurance



 Execution tracing
▪ Code coverage
▪ Indirect relationships
▪ Dynamic dependencies

 Memory tracing
▪ Heap management patterns
▪ Object instances
▪ Taint propagation

 Environment



 Attack Surface Area

▪ Dataflow entry points

▪ Privilege boundaries

 Implementation Flaws

▪ Arithmetic flaws

▪ Comparison flaws

▪ Unchecked user input

 Exploitability

▪ Execution environment

▪ Compiler security

▪ Reachability

 History

▪ Code age

▪ Author credibility



 Hierarchical Layout

▪ Layered by order of 
connectedness

▪ Not for highly connected graphs



 Circular

▪ Nodes aligned on circles

▪ Clustering



 Orthogonal

▪ Edges aligned on axes

▪ Clustering



 Force Directed

▪ Spring, Magnetic, and 
Gravitational force

▪ Packing



 Hyperbolic Space 

▪ Clarity on center focus

▪ Packing



 Higher Dimensional Space

▪ Clarity with high connectivity

▪ Multi-level views



 Nodes
▪ Spatial coordinates

▪ Spatial extents

▪ Color

▪ Shape

 Edges
▪ Color

▪ Shape

▪ Width

▪ Style



 Nodes
▪ Spatial coordinates

▪ Spatial extents

▪ Color

▪ Shape

 Edges
▪ Color

▪ Shape

▪ Width

▪ Style



 Nodes
▪ Spatial coordinates

▪ Spatial extents

▪ Color

▪ Shape

 Edges
▪ Color

▪ Shape

▪ Width

▪ Style



 Observe binary interdependencies



 Acquire a method level control flow graph 



 Acquire a method level control flow graph 



 Reduce graph using code coverage data 



 Trace dataflow dependency to discover taint 
propagation



 Use static analysis plugins to derive security 
properties such as GS and SafeSEH



 Use static analysis plugins to derive security 
properties such as GS and SafeSEH



 Analyze non-covered 
paths in tainted 
functions 



 Analyze non-covered 
paths in tainted 
functions 



 Examine source code where correlations 
occur



 Source Code Revision History

▪ History Flow



 Source Code Revision History

▪ History Flow



 State Machine Models

▪ Thinking Machine



 State Machine Models

▪ Thinking Machine



Richard Johnson

richardj@microsoft.com



Richard Johnson

richardj@microsoft.com

http://swiscience/
http://swiscience/

