
Taint Nobody Got 
Time for Crash 
Analysis 



Crash Analysis  



Triage Goals 
 Execution Path 

◦ What code paths were executed 

◦ What parts of the execution interacted with external data 

 Input Determination 
◦ Which input bytes influence the crash 

 Exploitability 
◦ Does this crash have a security impact 

◦ Read Access – Information Leak 

◦ ASLR Bypass 

◦ Write Access – Data Modification 

◦ Credentials 

◦ Control Flow 

◦ Execute Access – Game Over 



Common Scenarios 
 Fuzzing 

◦ Spray ‘n Pray 

◦ Grammar-based  

◦ “Fuzzing with Code Fragments” 

 Static Analysis 
◦ Intra-procedural Analysis Tools 

◦ Manual code review 

 Third Party 
◦ In-the-wild exploitation 

◦ Vulnerability response teams 

◦ Vulnerability brokers 



Existing Tools  
 Execution Path 

◦ Process Stalker, CoverIt (hexblog), BlockCov, IDA PIN Block Trace 

◦ Bitblaze, Taintgrind, VDT 

 Input Determination 
◦ delta, tmin, diff 

 Exploitability 
◦ !exploitable  

◦ CrashWrangler 

◦ CERT Triage Tools 



Automation Methods  
 Execution Path 

◦ Code Coverage 

◦ Taint Analysis 

 Input Determination 
◦ Slicing 

 Exploitability 
◦ Symbolic Execution 

◦ Abstract Interpretation 



Automation Methods  
 Execution Path 

◦ Code Coverage 

◦ Taint Analysis 

 Input Determination 
◦ Slicing 

 Exploitability 
◦ Symbolic Execution 

◦ Abstract Interpretation 



Taint Analysis 



Concept  
 Formally – Information Flow Analysis 

◦ Type of dataflow analysis 

◦ Can be static or dynamic, often hybrid 

◦ Applied to track user controlled data through execution 

 

 Methodology 
◦ Define taint sources 

◦ Single-step execution 

◦ Apply taint propagation policy for each instruction 

◦ Apply taint checks (if any) 



Concept 
 Define Taint Sources 

◦ Hook I/O Functions 

◦ Look for taint sources 
◦ File name, network ip:port, etc 

◦ Track tainted file descriptor 

◦ Single-step 

◦ Add future data reads from 
taint source descriptors to 
the taint tracking engine 

◦ Apply taint policy on each 
instruction 

  

open() 
Look for defined taint source 

Add descriptor to taint tracker 

read() 
Check for tracked taint source id 

Add memory addrs to taint tracker 

main() 

parse() 
single-step 

tainted src operands propagate to dest 



Concept 
 Define Taint Sources 

◦ Hook I/O Functions 

◦ Look for taint sources 
◦ File name, network ip:port, etc 

◦ Track tainted file descriptor 

◦ Single-step 

◦ Add future data reads from 
taint source descriptors to 
the taint tracking engine 

◦ Apply taint policy on each 
instruction 

  

 A = TAINT() 
B = A  
C = B + 1 
D = C * B 
E = *(D) 

 A = TAINT() 
IF A > B: 
     C = TRUE 
ELSE: 
     C = FALSE 

EXPLICIT TAINT PROPAGATION 

IMPLICIT TAINT PROPAGATION 



Implementation Details  
 We utilize a tracer forked from the Binary Analysis Platform from 
Carnegie-Mellon University to facilitate taint tracing 

◦ Originally wrote separate PIN based tracer 

◦ BAP’s tracer is also a Pintool 

◦ Worked with the authors of BAP since early 2012 to improve the tracer so it 
performs acceptably against complex COTS software targets on Windows 

◦ Added code coverage and memory dump collection to our private version 

 

 PIN supplies a robust API and framework for binary instrumentation  
◦ Supports easily hooking I/O functions for taint sources 

◦ High performance single-stepping 

◦ Supports instrumenting at instruction level for taint propagation / checks 

  



Implementation Details  
 Taint Propagation Policy 

◦ Tree of tainted references to registers and bytes of memory are individually 
tracked 

◦ If input operands contain taint, propagate to all output operands 

◦ No control flow tainting 

◦ Optionally taint index registers 
◦ All index registers for LEA instructions are tainted 

 

◦ No support for MMX, Floating point FCMOV, SSE PREFETCH 

 



Taint Visualization Demo 





Design Considerations  
 Taint Policy 

◦ Implicit Information Flows 
◦ Over-tainting 

◦ Most common when applying implicit taint via control flow 

◦ Under-tainting 

◦ If control flow taint is ignored 

  

 Performance 
◦ Execution Speed 

◦ Analysis on each instruction is expensive 

◦ Avoid context switching 

◦ Memory Overhead 



Trace Slicing  



Concept  
 Trace slicing finds the sub-graph of dependencies between two nodes 

◦ All nodes that influence or are influenced by specified node can be isolated 

◦ Reachability Problem 

 

 Forward Slicing 
◦ Slice forward to determine instructions influenced by selected value 

 

 Backward Slicing 
◦ Slice backward to locate the instructions influencing a value 

◦ Collect constraints to determine the degree of control over the value 



Concept  
 Methodology 

◦ Collect trace 

◦ Convert native assembler to IL 

◦ Select location and value of interest (register or memory address) 

◦ Select direction of slice 

◦ Follow dependencies in desired direction to produce sub-graph 

 



Forward Slicing  
 Slice forward to determine 
instructions influenced by a value 

  

S = {v} 
For each stmt in statements: 
    If vars(stmt.rhs)  S !=  then 
        S := S  {stmt.lhs} 
    else 
        S := S – {stmt.lhs} 
Return S 

stmt S 

el_size, el_count, el_data = read() {el_size} 

total_size = el_size * el_count {el_size, total_size} 

buf = malloc(total_size) {el_size, total_size} 

while count < el_count {el_size, total_size} 

    offset = count * el_size {el_size, total_size, offset} 

    data_offset = el_data + offset {el_size, total_size, offset, data_offset} 

    buf_offset = buf + offset {el_size, total_size, offset, data_offset, 
buf_offset} 

    memcpy(buf_offset,  
           data_offset, el_size) 

{el_size, total_size, offset, data_offset, 
buf_offset} 



Backward Slicing  
 Slice backward to locate the 
instructions influencing a value 

S = {v} 
For each stmt in reverse(statements): 
    If {stmt.lhs}  S !=  then 
        S := S – {stmt.rhs} 
        S := S  vars(stmt.rhs) 
Return S 

stmt S 

el_size, el_count, el_data = read() {data_offset, el_data, offset, count, el_size} 

total_size = el_size * el_count {data_offset, el_data, offset, count, el_size} 

buf = malloc(total_size) {data_offset, el_data, offset, count, el_size} 

while count < el_count {data_offset, el_data, offset, count, el_size} 

    offset = count * el_size {data_offset, el_data, offset, count, el_size} 

    data_offset = el_data + offset {data_offset, el_data, offset} 

    buf_offset = buf + offset {data_offset} 

    memcpy(buf_offset,  
           data_offset, el_size) 

{data_offset} 



Implementation Details 
 BAP includes an intermediate assembly language definition called BIL 

 BIL expands each native assembly instruction into a sequence of micro 
operations that make native instruction side effects explicit 

 We only have to handle assignments of the form var := exp 

 We concretize the trace and convert to SSA to create uniqe labels for 
each assignment 

 program   ::=   stmt* 
stmt       ::=   var := exp | jmp(exp) | cjmp(exp,exp,exp)  
               | halt(exp) | assert(exp) | label label_kind  
               | special(string) 



Implementation Details 
 BAP includes an intermediate assembly language definition called BIL 

 BIL expands each native assembly instruction into a sequence of micro 
operations that make native instruction side effects explicit 

 We only have to handle assignments of the form var := exp 

 We concretize the trace and convert to SSA to create uniqe labels for 
each assignment 

 .text:08048887  mov edx, [edi+11223344h] ;    
.text:08048887    ;   @context "R_EDX" = 0x1000, 0, u32, wr  
.text:08048887    ;   @context "R_EDI" = 0x11, 1, u32, rd 
.text:08048887    ;   @context "mem[0x11223355]" = 0x0, 0, u8, rd 
.text:08048887    ;   @context "mem[0x11223356]" = 0x0, 0, u8, rd 
.text:08048887    ;   @context "mem[0x11223357]" = 0x0, 0, u8, rd 
.text:08048887    ;   @context "mem[0x11223358]" = 0x0, 0, u8, rd 
.text:08048887    ; label pc_0x8048887 
.text:08048887    ; R_EDX:u32 = mem:?u32[R_EDI:u32 + 0x11223344:u32, e_little]:u32 



Backslice Demo 



Design Considerations  
 Under-tainting Implicit Flows 

◦ Backslice by “size” stops at node C because 
of a constant assignment  
◦ “size” is implicitly dependent on e1, but not on e2 

 Over-tainting 
◦ APIs that hold state created by a previously 

tainted value may indicate taint in later calls 

◦ Inflates the trace size by including calls with 
untainted arguments  

◦ Example: malloc(tainted_size) could 
permanently taint the allocator’s internal 
structures 



Symbolic Execution  



Concept  
 Symbolic execution lets us “execute” a series of instructions without 
using concrete values for variables 

 Instead of a numeric output, we get a formula for the output in terms of 
input variables that represents a potential range of values 

  

 Given a crash state, analyze potential paths to find exploitable condition 
◦ A path is exploitable if it meets prior path constraints and contains a tainted 

memory write or control transfer 

  



Concept  
 Methodology 

◦ Pick an initial state 
◦ Trace taint until point of interest 

◦ Store process state and memory image 

◦ Choose desired future state 
◦ Depth-First Search for all future states 

◦ Encode program logic from initial state to future state into SMT formula 

◦ Initialize values in the SMT formula with saved program state 
◦ Replace one or more concrete values with symbolic value  

◦ Solve formula with SMT solver 

 

 
 

 

 



SMT Solvers 
 In very simple terms 

◦ You ask a question, solver tries to answer 

 work, sleep, lulz = Ints('work sleep lulz') 

 solve(work >= 40,    # 40+ hour work week 
      sleep >= 42,   # 6+ hours sleep/day 
      lulz >= work,  # work/lulz balance       
      work + sleep + lulz == 168) # 168 hours/week 

 [sleep = 42, lulz = 63, work = 63] 

 Answer: 

 Question: 



SMT Solvers 
 In very simple terms 

◦ You ask a question, solver tries to answer 

 x, y = Reals('x y') 

 solve(x**2 + y**2 < 1,  
      2*x + y > 1), 
      z**2 == 1/(x * y)) 

 [x = 1/8, y = 7/8, z = -3.0237157840?] 

 Answer: 

 Question: 



SMT Solvers 
 What’s the point? 

◦ Translate program’s code into SMT-acceptable format 

◦ Ask questions and possibly get some answers! 

 

  

  

   

Is this snippet equivalent to “add eax, ebx”? 

add eax, ebx 
xor ebx, ebx 
sub ecx, 0x123 
setz bl 
add eax, ebx 



SMT Solvers 
 ASSERT( 0bin1 = (LET initial_EBX_77_0 = R_EBX_6 IN 
(LET initial_EAX_78_1 = R_EAX_5 IN 
(LET R_EAX_80_2 = BVPLUS(32, R_EAX_5,R_EBX_6) IN 
(LET R_ECX_117_3 = BVSUB(32, R_ECX_7,0hex00000123) IN 
(LET R_ZF_144_4 = IF (0hex00000000=R_ECX_117_3) THEN 
0bin1 ELSE 0bin0 ENDIF IN 
(LET R_EAX_149_5 = BVPLUS(32, R_EAX_80_2, 
(0bin0000000000000000000000000000000 @ R_ZF_144_4)) IN 
(LET final_EAX_180_6 = R_EAX_149_5 IN 
IF (NOT(final_EAX_180_6=BVPLUS(32, 
initial_EAX_78_1,initial_EBX_77_0))) THEN 
); 
QUERY(FALSE); 
COUNTEREXAMPLE; 

add eax, ebx 
xor ebx, ebx 
sub ecx, 0x123 
setz bl 
add eax, ebx 

Model: 
R_ECX_7 -> 0x123 
Solve result: Invalid 



Satisfiability 
  

X<2 

X>2 

X<2 && x>2  

-> UNSAT 

X<2 && ~(x>2)  

-> SAT 

… 

true 

true 

false 

false 

Don’t explore 
any further 

OK to explore, 
since the path’s 

predicate is 
satisfiable 



Implementation details  
 BAP’s tracer has been modified to collect registers, taint information 
and a memory snapshot when a crash occurs 

 Symbolic executor (motriage) uses this state as a starting point 

 motriage continues execution using variables instead of constants for 
unmapped memory: 
 mov eax, [ebx] => eax := new_variable() iff [ebx] is undefined 

 Taint is propagated for each instruction 

 Each instruction’s semantics is appended to our formula, using symbolic 
variables where necessary 



Implementation details  
 For each code branch, motriage forks its state (registers, memory, taint 
info) and updates the current path’s predicate: 

◦ True path: path_pred  cond 

◦ False path: path_pred  ~cond 

 The SMT formula is then solved for each new path 
◦ If the path’s predicate becomes UNSAT, stop exploring that path 

 Continue the DFS search until SUCCESS or FAIL condition is met 

 



Implementation Details 
 Terminate with FAIL condition, if: 

◦ Path is unsatisfiable (determined with a SMT solver): 
 
 
 
 
◦ “A” can’t be reached, so it’s not analyzed  

◦ Unknown (and untainted) jump target 
◦ We can’t follow jmp eax, if eax is symbolic 

◦ Symbolic (and untainted) write 
◦ mov [eax], 0 

◦ If EAX is symbolic but untainted, then we have no idea where exactly are we writing  

◦ All future reads would have to take that into account – too much trouble  

◦ Max number of instructions or branches 
 

 

X=1 
If(x==2){ A } 
Else { B } 





Triage Tool Demo 



 void test_motriage(unsigned int 
*buf) 
{ 
  unsigned int b,x,y; 
  b = buf[0]; 
  x = buf[b+0x11223344]; 
  y = buf[x]; 
  exploit_me(1, x, y); 
} 

 void exploit_me(int depth, unsigned int 
x, unsigned int y) 
{ 
  int stack[1]; 
  int b, i; 
  b = x & 0xff; 
  switch(depth){ 
    case 4: 
      if(b == 0x44) 
        stack[y] = 1; 
      for(i=0; i < 4; i++)  
        stack[i] = 0x29a; 
      return; 
    case 3: 
      if(b != 0x33) y = 0; 
      break; 
    case 2: 
      if(b != 0x22) y = 0; 
      break; 
    case 1: 
      if(b != 0x11) y = 0; 
      break; 
    default: 
      assert(0); 
  } 
  exploit_me(++depth, x>>8, y); 
} 







Performance  
 Two factors: number of branches and code size 

◦ Running time exponential in number of branches 

◦ N branches require n forks, so 2^n possible paths to analyze 

◦ For branchless code you pay the same as in a software emulator (linear time) 

  

 How deep do you want to search? 
◦ First, you need to get to the controlled write without crashing 

◦ Then you need to perform a write to address constrained by all the 
conditional branches you passed 

◦ The farther the write is, the less likely it’s going to be useful 

◦ Eventually path explosion will meet hardware limits 



False positives 
 False Positives 

◦ Every read from unmapped (or symbolic) address creates a new symbolic 
variable 

◦ We don’t know what exactly we are reading, so we don’t know what 
constraints should be asserted on these variables 

◦ Consider an example: 

 
 
 

 

 

◦ Our approach incorrectly reports a SUCCESS on mem[y] = 0, despite this path 
being unsatisfiable 

Let x,y be tainted variables and for all i, mem[i] % 2 == 0 
  
z = mem[x]; 
if(z % 2 == 1) { 
   mem[y] = 0; 
} 



Conclusion 
 Value of a crash is related to our ability to perform difficult analysis 

 Automation solutions are needed to keep up with crash generation 

 Combined with slicing, taint analysis greatly reduces manual analysis 
time for gathering data flow information 

 Symbolic execution, seeded with taint information, allows us 
automatically to reason about exploitability of a crash with a higher 
degree of accuracy that previous solutions 

  

 



Thank You 

 A special thanks to Ed Schwartz and the rest of the team working on BAP 
◦ http://bap.ece.cmu.edu/ 

  

Richard Johnson 
@richinseattle 
moflow.org 

pa_kt 
@pa_kt 
gdtr.wordpress.com 

http://bap.ece.cmu.edu/
http://bap.ece.cmu.edu/

